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T(ﬁgf TYPE  PRIORITY SIZE # OF EXEC PERIOD
1 SEQ 62 3 40 100
2 SEQ 60 5 25 130
3 SEQ 58 8 15 180
4 SEQ 56 10 10 110
5 SEQ 54 15 10 210
6 SEQ 32 10 1 -
7 SEQ 32 10 1 -
8 SEQ 32 10 1 -
9 SEQ 30 10 1 -
10 SEQ 28 20 1 -
11 SEQ 26 30 1 -
12 SEQ 24 50 1 -
13 SEQ 22 100 1 -
14 SEQ 20 200 1 -

TASKE SUBTASK TvpE PRIORITY  SIZE  # OF EXEC

(no) (no)

1 HPC 20 50

15 2 HPC 20 90 1
3 HPC 20 20
1 HPC 20 30
2 HPC 20 80

16 3 HPC 20 20 1
4 HPC 20 20
5 HPC 20 20
1 HPC 10 50
2 HPC 10 80
3 HPC 10 90
4 HPC 10 20

17 5 HPC 10 30 1
6 HPC 10 50
7 HPC 10 60
8 HPC 10 100
9 HPC 10 20
10 HPC 10 20
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Algorithm L1_Scheduler(T;€ A, S), where T; is an arrived task
switch (type of Tj)
{
case SEQ task :
Ci = CoreSelectSEQ(T;)
submit T; to L2 scheduler of core C;

case HPC task :
CoreSelectHPC(T;)

}

Algorithm CoreSlectHPC(T; € A): (X-Y), where X is one of (MIN-or
MAX-) and Y is a scheduling algorithem of SEQ task
while (T; #0) do
{
if (X is MIN-) ‘
select a subtask t, €T; with the smallest t
if (X is MAX-) ‘
select a subtask t €T; with the largest t
Ci = CoreSelectSEQ(t},) for Y
submit tLtQ L2_scheduler of core C;
Ti =T - {ty}

}

FIG. 8
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1
TASK SCHEDULING METHOD FOR
PRIORITY-BASED REAL-TIME OPERATING
SYSTEM IN MULTICORE ENVIRONMENT

CROSS REFERENCE TO RELATED
APPLICATION

This application claims the benefit of Korean Patent Appli-
cation No. 10-2013-0122057 filed on Oct. 14, 2013, which is
hereby incorporated by reference in its entirety into this appli-
cation.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates generally to a task scheduling
method for a priority-based real-time operating system in a
multicore environment and, more particularly, to a method
that efficiently schedules tasks in a priority-based Real-Time
Operating System (RTOS) installed in a multicore system.

2. Description of the Related Art

Recently, there has been an increase in the number of cases
where a multi-core structure is adopted to improve perfor-
mance relative to power consumption, even in the embedded
industry. The use of a multicore structure in an embedded
system not only reduces the size of a chip, but also decreases
weight and power consumption relative to performance, and
thus greatly improves the performance of applications.

However, the use of a multicore structure does not always
mean that performance is improved. In some cases, due to low
parallelism of an application program, performance may be
deteriorated compared to the use of a single core. In order to
desirably use a multicore structure, a developer must consider
the structure of an application, the partitioning of tasks, the
scheduling of tasks, etc. Among these considerations, a task
scheduling method is the means contributing most eftectively
to the improvement of performance.

Conventional real-time multicore task scheduling schemes
include a global scheme and a partitioned scheme. As shown
in FIG. 1A, the global scheme is configured such that only a
single scheduler is present and controls scheduling events of
all core processors. In contrast, as shown in FIG. 1B, the
partitioned scheme is configured to determine in advance
which cores are to be used to execute tasks, partition the tasks,
and execute the tasks in the local schedulers of the respective
cores.

However, in the Real-Time Operating System (RTOS),
there are many cases where tasks are dynamically executed,
and thus the above-described conventional real-time multi-
core task scheduling schemes (global scheme and partitioned
scheme) deteriorate efficiency.

Accordingly, for efficiency, a decentralized scheme shown
in FIG. 2A or a fully decentralized scheme shown in F1G. 2B
is more suitable. This scheme is similar in shape to the parti-
tioned scheme, but has one more scheduling queue. The
decentralized or fully decentralized scheme has a hierarchical
structure of L1 and L2 levels, wherein L1 functions to dis-
tribute tasks and 1.2 is a single core dedicated local scheduler
present in each core.

The global scheme is advantageous in that it is simple and
intuitive, but is disadvantageous in that all scheduling events
are concentrated on a single scheduler, so that as the number
of cores increases, the scheduling overhead increases. There-
fore, in the global scheme, once a task is assigned to a core,
preemption is made impossible in some cases. This deterio-
rates real-time properties, thus resulting in problems.
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2

The decentralized scheme has a structure that is extensible
even if the number of cores increases, and allows the sched-
uling overhead to be distributed. However, in this case, when
it is considered that most commercial RTOSs use fixed pri-
ority policies, there occurs a problem (priority inversion) in
which the priority of tasks may be inverted when tasks are
assigned to cores. The problem of priority inversion means
that a task having lower priority is executed even if a task
having higher priority is present in another core. Of course, in
a multicore system, there are many cases where, even if some
tasks are accidentally executed with the priorities thereof
inverted, the performance thereof only slightly decreases, and
a serious problem does not occur. However, the frequent
occurrence of priority inversion is not so preferable.

As related preceding technology, Korean Patent Applica-
tion Publication No. 10-2007-0037427 (entitled “Scheduling
in a multicore structure™) discloses technology for solving
problems that may occur in scheduling used to assign threads
in multicore structures.

As another related preceding technology, Korean Patent
Application Publication No. 10-2013-0059300 (entitled
“Scheduling for supporting real-time properties and Quality
of Service (QoS) in a Multicore system™) discloses technol-
ogy for supporting not only QoS requirements, but also real-
time properties in a multicore system.

As further related preceding technology, Korean Patent
Application Publication No. 10-2013-0074401 (entitled
“Multicore-based computing apparatus having a hierarchical
scheduler, and a hierarchical scheduling method therefor)
discloses technology for reducing an unnecessary cache miss
and providing a hierarchical scheduling technique optimized
for a multicore system.

As yet another related preceding technology, Korean
Patent Application Publication No. 10-2013-0088513 (en-
titled “Task distribution method and apparatus for a multicore
system”) discloses technology for incorporating the charac-
teristics of real-time tasks into a system, distributing real-time
tasks and non-real-time tasks to the cores of the system, and
dynamically solving an imbalance occurring during the
execution of tasks.

SUMMARY OF THE INVENTION

Accordingly, the present invention has been made keeping
in mind the above problems occurring in the prior art, and an
object of the present invention is to provide a method that
solves problems occurring in real-time multicore task sched-
uling which employs a conventional decentralized scheme.

In accordance with an aspect of the present invention to
accomplish the above object, there is provided a task sched-
uling method for a priority-based real-time operating system
in a multicore environment, including combining one or more
scheduling algorithm candidates for sequential tasks with one
or more scheduling algorithm candidates for parallel tasks;
simulating respective task scheduling algorithm candidates
generated at combining, and evaluating performances of the
task scheduling algorithm candidates based on performance
evaluation criteria; and selecting a task scheduling algorithm
exhibiting best performance from among results obtained at
evaluating the performances.

The performance evaluation criteria may include an execu-
tion time required until execution of a last subtask of an
application is completed, and a number of cases where a task
having lower priority is executed even if a task having higher
priority is waiting in another core.

Selecting the task scheduling algorithm may be configured
to select a task scheduling algorithm candidate having a high-
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est value of average values as the task scheduling algorithm
exhibiting best performance, wherein the average values are
obtained by averaging a sum of percentages of execution
times required until the execution of the last subtask of the
application is completed and percentages of the number of
cases where a task having lower priority is executed even if a
task having higher priority is waiting in another core, based
on results of the simulation of respective task scheduling
algorithm candidates.

The simulation at evaluating the performances may be
configured to perform simulation by applying each of the task
scheduling algorithm candidates, generated at combining, to
a multicore real-time operating system application program,
and requirements of the multicore real-time operating system
application program may include a requirement that sequen-
tial tasks and parallel tasks need to be present in an applica-
tion, arequirement that the sequential tasks need to have tasks
repeatedly executed with periodicity, a requirement that the
sequential tasks and the parallel tasks need to have depen-
dency, and a requirement that all tasks need to have priorities
and sizes.

The multicore real-time operating system application pro-
gram may be an application program adopting a decentralized
scheme having a hierarchical structure.

The one or more scheduling algorithm candidates for the
sequential tasks may include Round Robin (RR), Minimum
Number of Tasks (MNT), Load Balance (I.B), and Number of
Tasks, Waiting Time and Priority (NTWP) algorithms.

The one or more scheduling algorithm candidates for the
parallel tasks may include Minimum (MIN)-RR, MIN-MNT,
MIN-LB, MIN-NTWP, Maximum (MAX)-RR, MAX-MNT,
MAX-LB, and MAX-NTWP algorithms.

The task scheduling algorithm candidates generated at
combining may include RR/MIN-RR, RR/MIN-MNT,
RR/MIN-LB, RR/MIN-NTWP, RR/MAX-RR, RR/MAX-
MNT, RR/MAX-LB, RR/MAX-NTWP, MNT/MIN-RR,
MNT/MIN-MNT, MNT/MIN-LB, MNT/MIN-NTWP,
MNT/MAX-RR, MNT/MAX-MNT, MNT/MAX-LB, MNT/
MAX-NTWP, LB/MIN-RR, LB/MIN-MNT, LB/MIN-LB,
LB/MIN-NTWP, LB/MAX-RR, LB/MAX-MNT, LB/MAX-
LB, LB/MAX-NTWP, NTWP/MIN-RR, NTWP/MIN-MNT,
NTWP/MIN-LB, NTWP/MIN-NTWP, NTWP/MAX-RR,
NTWP/MAX-MNT, NTWP/MAX-LB, and NTWP/MAX-
NTWP algorithms.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and advantages of the
present invention will be more clearly understood from the
following detailed description taken in conjunction with the
accompanying drawings, in which:

FIGS. 1A and 1B are diagrams showing task scheduling in
a conventional global scheme and partitioned scheme;

FIGS. 2A and 2B are diagrams showing task scheduling in
a decentralized scheme;

FIG. 3 is a flowchart showing a task scheduling method for
a priority-based Real-Time Operating System (RTOS) in a
multicore environment according to an embodiment of the
present invention;

FIG. 4 is a diagram showing an example to which a sequen-
tial task scheduling algorithm is applied;

FIGS. 5A to 5C are diagrams showing the results of appli-
cation of the sequential task scheduling algorithm;

FIG. 6 is a diagram showing an example of an RTOS
multicore application;

FIG. 7 is a diagram illustrating the details of respective
tasks shown in FIG. 6;
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4

FIG. 8 is a diagram illustrating the entire multicore task
scheduling algorithm;

FIG. 9 is a flowchart showing the entire multicore task
scheduling algorithm; and

FIG. 10 is a diagram illustrating the results of evaluation
simulation.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention may be variously changed and may
have various embodiments, and specific embodiments will be
described in detail below with reference to the attached draw-
ings.

However, it should be understood that those embodiments
are not intended to limit the present invention to specific
disclosure forms and they include all changes, equivalents or
modifications included in the spirit and scope of the present
invention.

The terms used in the present specification are merely used
to describe specific embodiments and are not intended to limit
the present invention. A singular expression includes a plural
expression unless a description to the contrary is specifically
pointed out in context. In the present specification, it should
be understood that the terms such as “include” or “have” are
merely intended to indicate that features, numbers, steps,
operations, components, parts, or combinations thereof are
present, and are not intended to exclude a possibility that one
or more other features, numbers, steps, operations, compo-
nents, parts, or combinations thereof will be present or added.

Unless differently defined, all terms used here including
technical or scientific terms have the same meanings as the
terms generally understood by those skilled in the art to which
the present invention pertains. The terms identical to those
defined in generally used dictionaries should be interpreted as
having meanings identical to contextual meanings of the
related art, and are not interpreted as being ideal or exces-
sively formal meanings unless they are definitely defined in
the present specification.

Prior to the description of the present invention, basic
assumptions and matters to be previously noted in the present
invention will be summarized and described below.

A task scheduling method greatly differs according to the
system environment and basic assumption. Therefore, differ-
ences between a scheduling method used in a conventional
multicore (or multiprocessor) system and the scheduling
method according to the present invention will be briefly
described, as shown in the following Table 1.

TABLE 1
Real-time task Parallel task RTOS task
Scheduling Scheduling scheduling
Representative Global fixed MIN-MIN, The present
algorithm Priority (G-FP), MAX-MIN, invention
Partitioned-FP Sufferage,
(P-FP), Global XSufferage
Earliest-Deadline-
First (G-EDF),
Partitioned-EDF
(P-EDF), Rate
Monotonic Next
Fit (RMNF),
EDF-NF, Pfair
Purpose Meet deadline Shorten final Maintain priority
completion and shorten final
time completion time
Task type Periodic task Parallel task Sequential,

parallel task
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TABLE 1-continued

Real-time task Parallel task RTOS task

Scheduling Scheduling scheduling
Required Deadline, period, Execution Priority,
input execution time time execution time
Application Soft/hard High- Real-time and
flelds real-time performance high-performance

computing computing computing

A problem desired to be solved in the present invention
belongs to an RTOS task scheduling problem, as shown in
Table 1. In this problem, the tasks of the RTOS have fixed
priority, as adopted by a conventional commercial RTOS.
Further, tasks have corresponding sizes (execution times),
and are divided into sequential tasks and parallel tasks.

Meanwhile, a multicore system S to which the present
invention is applied is composed of m core processors and is
defined as S={C,li=1, ... m}, where C, denotes an i-th core in
S.

A multicore application A is composed of n tasks and is
defined as A={T,li=1, ..., n}, where T, denotes an i-th task in
A. Each task has fixed priority ‘prior(T,)’.

In this case, tasks T, may be classified into sequential tasks
(SEQ tasks) and parallel tasks (High Performance Comput-
ing: HPC tasks).

Sequential tasks refer to tasks aimed at being executed as
fast as possible depending on given priorities.

Parallel (HPC) tasks are each composed of a plurality of
low-level (subtasks), and HPC task T, is defined as
T,=U{tfli=1, ..., r}, where t,* denotes an i-th subtask in T,.
In this case, subtasks inherit the priority of the HPC task itself
as default.

Further, the expected execution time of the task T, is rep-
resented by t(T,), which denotes the remaining amount of
work of the corresponding task at the present time and is
identical for all cores.

Furthermore, the expected start time of the task T, in a
specific core C, is represented by EST(T,,C)). The value of
EST(T,,C)) denotes the total expected time required to wait
until the task T, is actually executed in the core C, after
entering a scheduling queue. This time may be calculated as
the sum of the expected execution times of tasks having
priority equal to or higher than that of the task T,.

In the above-described multicore system, the term “task
scheduling” denotes the problem of determining to which
core each task is to be assigned. The present invention
assumes an extensible decentralized scheme, such as those
shown in FIGS. 2A and 2B. The present invention places
emphasis on the following two cases so as to efficiently
schedule tasks in a priority-based Real-Time Operating Sys-
tem (RTOS) installed in the multicore system.

1) Minimization of Task Priority Inversion in Multicore
Environment

A phenomenon in which a current task is executed even if
another task having higher priority is waiting in another core
is called ‘priority inversion.” In the priority-based RTOS, the
real-time properties of applications may be improved only
when such priority inversion is minimized.

2) Task Load Equalization for High Performance

High performance may be obtained only when the loads of
tasks are decentralized. A criterion for decentralizing loads
may be represented by makespan (final completion time of a
parallel application program). The loads of tasks may be
equalized only when makespan is minimized.

Therefore, if scheduling basically satisfies these two con-
siderations, it may be regarded as desirable scheduling.
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However, in the case of a decentralized structure, a sched-
uler is hierarchically configured, and a second level (L2)
scheduler only needs to use an existing single core scheduler
without change (for reference, in the conventional RTOS; a
scheduler that is the most widely used as a single core sched-
uler is a preemptive round-robin scheduler). Therefore, a first
level (L.1) scheduler only needs to be desirably designed so
that the two considerations can be desirably satisfied. The
function of the L1 scheduler is to distribute tasks to cores.

Hereinafter, embodiments of the present invention will be
described in detail with reference to the attached drawings.

FIG. 3 is a flowchart showing a task scheduling method for
a priority-based Real-Time Operating System (RTOS) in a
multicore environment according to an embodiment of the
present invention, FIG. 4 is a diagram showing an example to
which a sequential task scheduling algorithm is applied,
FIGS. 5A to 5C are diagrams showing the results of applica-
tion of the sequential task scheduling algorithm, FIG. 6 is a
diagram showing an example of an RTOS multicore applica-
tion, FIG. 7 is a diagram illustrating the details of respective
tasks shown in FIG. 6, FIG. 8 is a diagram illustrating the
entire multicore task scheduling algorithm, FIG. 9 is a flow-
chart showing the entire multicore task scheduling algorithm,
and FIG. 10 is a diagram illustrating the results of evaluation
simulation.

A task scheduling method for a priority-based RTOS in a
multicore environment according to an embodiment of the
present invention includes the step S10 of discovering sched-
uling algorithm candidates for each of sequential tasks and
parallel (HPC) tasks, the step S12 of combining the schedul-
ing algorithm candidates for the sequential tasks and the HPC
tasks, the step S14 of evaluating the performances of the
scheduling algorithm candidates based on the entire multi-
core task scheduling algorithm, and the step S16 of selecting
atask scheduling algorithm having the optimal performance.

First, at step S10, scheduling algorithm candidates for each
of sequential tasks and HPC tasks are discovered (selected).
The scheduling algorithm candidates for each of sequential
tasks and HPC tasks may be discovered (selected) by a user.
For example, one or more scheduling algorithm candidates
for sequential tasks and one or more scheduling algorithm
candidates for HPC tasks, which are previously stored (or
defined) in memory or the like, may be used by the user.

Here, the scheduling algorithm candidates for sequential
tasks will be described below. Sequential tasks need only be
executed as fast as possible depending on given priorities.
Expectable task waiting time is related to BST(T,,C)). The
sequential task scheduling algorithm candidates applied to
the embodiment of the present invention may include Round
Robin (RR), Minimum Number of Tasks (MNT), Load Bal-
ance (LLB), and Number of Tasks, Waiting Time and Priority
(NTWP) algorithms among various task scheduling algo-
rithms.

The Round Robin (RR) algorithm is an algorithm for
sequentially distributing tasks to cores immediately when the
tasks arrive and has the advantage of being very simple. This
algorithm may be used for reference and comparison with
other algorithms.

In the case of the Minimum Number of Tasks (MNT)
algorithm, the number of tasks assigned to each core becomes
good information required to realize the load equalization of
tasks. This algorithm assigns tasks to a core to which a mini-
mum number of tasks are assigned.

The Load Balance (LB) algorithm is an algorithm in which
only the sum of execution times of tasks assigned to each core
is taken into consideration. This algorithm assigns tasks to a
core, in which the sum of task execution times is the smallest.
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The Number of Tasks, Waiting Time and Priority (NTWP)
algorithm is an algorithm for selecting a core having tasks, the
waiting time of which is the shortest, from among cores
having the same number of tasks if there are multiple cores
having the same number of tasks after the MNT algorithm has
been taken into consideration. If there are multiple cores
having the same task waiting time, a core having a task set, for
which the sum of task priority values is the smallest, is
selected. This algorithm is a hybrid scheme which considers
all of the number of tasks, waiting time, and priority.

A simple example to which sequential task scheduling
algorithm candidates are applied is shown in FIG. 4. In the
example of FIG. 4, it is assumed that two cores are present.
When a task arrives at the [.2 scheduler, a preemption policy
is applied according to the task priority, and then tasks are
rearranged. FIG. 5A illustrates a case where the RR or MNT
algorithm is applied. According to the example presented in
FIG. 4, the RR or the MNT algorithm generates the same
schedule, as shown in FIG. SA. Therefore, although it is
difficult to know a difference between the RR and MNT
algorithms, the MNT algorithm desirably reflects a current
load state in a more dynamic environment, and is then able to
make better schedules than the RR algorithm. FIG. 5B illus-
trates a case where the LB algorithm is applied. Referring to
FIG. 5B, the LB algorithm allows loads to be desirably bal-
anced by minimizing makespans. FIG. 5C illustrates a case
where the NTWP algorithm is applied. Referring to FIG. 5C,
it can be seen that the NTWP algorithm increases the occur-
rence of load imbalance, but decreases the occurrence of
priority inversion, compared to the LB algorithm.

Below, the HPC task scheduling algorithm candidates will
be described. Scheduling HPC tasks is to schedule all sub-
tasks of each HPC task. As an algorithm for reducing the final
completion time (makespan) of the HPC task upon schedul-
ing subtasks, there are famous algorithms such as MIN-MIN
and MAX-MIN algorithms. The MIN-MIN algorithm is con-
figured to arrange tasks in ascending order of task size, and
assign first a task having a minimum size in such a way that
the minimum-size task is assigned to a core which has com-
pleted its own tasks first. The MAX-MIN algorithm is con-
figured to arrange tasks in descending order of task size, and
assign first a task having a maximum size so that the maxi-
mum-size task is assigned to a core which has completed its
own tasks first.

The present invention applies the MIN-MIN algorithm and
the MAX-MIN algorithm to each of the above-described
sequential task scheduling algorithms, and then presents HPC
task scheduling candidates. For example, a MIN-RR algo-
rithm is a HPC task scheduling scheme for selecting first a
task having a minimum size and assigning the task to a core in
a round-robin manner. In this way, there are a total of eight
types of HPC task scheduling algorithm candidates, such as
MIN-(.) and MAX-(.)(where (.) is a sequential task schedul-
ing algorithm). That is, in the embodiment of the present
invention, the HPC task scheduling algorithm candidates are
MIN-RR, MIN-MNT, MIN-LB, MIN-NTWP, MAX-RR,
MAX-MNT, MAX-LB, and MAX-NTWP algorithms.

At step S12, after the sequential task scheduling algorithm
candidates and the HPC task scheduling algorithm candi-
dates, which are required in the embodiment of the present
invention, have been selected (discovered), the sequential
task scheduling algorithm candidates and the HPC task
scheduling algorithm candidates are combined. Task sched-
uling algorithm candidates generated via combination
become a total of 32 algorithms (that is, RR/MIN-RR,
RR/MIN-MNT, RR/MIN-LB, RR/MIN-NTWP, RR/MAX-
RR, RR/MAX-MNT, RR/MAX-LB, RR/MAX-NTWP,
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MNT/MIN-RR, MNT/MIN-MNT, MNT/MIN-LB, MNT/
MIN-NTWP, MNT/MAX-RR, MNT/MAX-MNT, MNT/
MAX-LB, MNT/MAX-NTWP, LB/MIN-RR, LB/MIN-
MNT, LB/MIN-LB, LB/MIN-NTWP, LB/MAX-RR,
LB/MAX-MNT, LB/MAX-LB, LB/MAX-NTWP, NTWP/
MIN-RR, NTWP/MIN-MNT, NTWP/MIN-LB, NTWP/
MIN-NTWP, NTWP/MAX-RR, NTWP/MAX-MNT,
NTWP/MAX-LB, and NTWP/MAX-NTWP algorithms).

Thereafter, at step S14, experiments are performed by
applying 32 task scheduling algorithm candidates generated
via combination to a multicore RTOS application program,
and the performances of the algorithm candidates are evalu-
ated. Requirements of the multicore RTOS application pro-
gram for experiments are given as follows. A first requirement
is that sequential tasks and HPC tasks should be present in an
application. A second requirement is that the sequential tasks
should have tasks that are repeatedly executed with periodic-
ity. A third requirement is that the sequential tasks and the
HPC tasks should have dependency. A fourth requirement is
that all tasks should have priorities and sizes (execution
times).

An example of a multicore application meeting such
requirements is illustrated in FIG. 6. FIG. 7 illustrates an
example which describes details of respective tasks shown in
FIG. 6.

Meanwhile, the algorithm of a multicore RTOS application
program (that is, the entire multicore scheduling algorithm)
for experiments may be illustrated, as shown in FIG. 8. In
FIG. 8, asequential task scheduling algorithm becomes Core-
SelectSEQ(T,). A HPC task scheduling algorithm is CoreSe-
lectHPC(T,), which may be regarded as utilizing the CoreSe-
lectSEQ(T,). An L1_Scheduler (T)) illustrated in FIG. 8 may
differ depending on which algorithms are to be used by Core-
SelectSEQ(T,) and CoreSelectHPC(T;). Combinations of
sequential task/HPC task algorithms are 32 types of candi-
dates. For this, in the present invention, those combinations
will be represented by a form such as RR/MIN-MNT. Here,
RR denotes CoreSelectSEQ(T;), and MIN-MNT denotes
CoreSelectHPC(T,). Inthe case of MNT/MAX-NTWP, MNT
becomes CoreSelectSEQ(T,), and MAX-NTWP becomes
CoreSelectHPC(T)).

FIG. 9 illustrates the algorithm of FIG. 8 in the form of a
flowchart. The reason for presenting only an .1 scheduler
algorithm is that, as described above, a decentralized multi-
core scheduling method only needs to use an existing single
core scheduling algorithm (priority-based scheduling algo-
rithm) as an [.2 scheduler algorithm without change. There-
fore, only the algorithms of .1 shown in FIGS. 2A and 2B are
presented. In the present invention, it is assumed that the 1.2
scheduling algorithm is a priority-based scheduling algo-
rithm that is frequently used in an RTOS for a single core.

Referring to the flowchart of FIG. 9, when the L1 scheduler
is initiated, it first receives a task T, at step S20. If atask T, is
not yet received, the .1 scheduler continuously waits at step
S22. Ifthe task T, is received, the .1 scheduler determines the
type of received task T, at step S24. If the type of task T, is a
sequential task, the [.1 scheduler executes a sequential task
scheduling algorithm at step S26, whereas if the type of task
T, is a parallel (HPC) task, the .1 scheduler executes an HPC
task scheduling algorithm at step S28. In this case, the execu-
tion of the sequential task scheduling algorithm means that
the sequential task is assigned to the .2 scheduler of a
selected core, and the execution of the HPC task scheduling
algorithm means that respective subtasks of the HPC task are
assigned to the 1.2 schedulers of a selected core.

In this way, the performances of algorithms are evaluated
by applying each of the 32 task scheduling algorithm candi-
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dates to the algorithm of FIG. 8. Here, performance evalua-
tion criteria required to respectively evaluate the 32 task
scheduling algorithm candidates are to minimize makespan
and priority inversion depending on the purpose of a task
scheduling problem, as described above. Therefore, in order
to evaluate performances, two types of evaluation indices
(makespan and priority inversion: prioinv) may be used.
Here, the term ‘makespan’ denotes the execution time (final
completion time) required until the last subtask of an appli-
cation is completed. The term ‘prioinv’ (priority inversion)
denotes the number of cases where a task having lower pri-
ority is executed even if a task having higher priority is
waiting in another core. For example, an ARM-Cortex A8
processor may simulate individual scheduling algorithm can-
didates on the multicore RTOS using the application pre-
sented in FIG. 7, and may obtain results such as those shown
in FIG. 10.

Finally, at step S16, a task scheduling algorithm having the
optimal performance is selected. In an embodiment of the
present invention, among average values obtained by averag-
ing the sum of percentages of execution times makespan
required until the execution of the last subtask of the appli-
cation is completed and the percentages of the number of
cases prionv where a task having lower priority is executed
even if a task having higher priority is waiting in another core
as a result of the simulation of respective task scheduling
algorithm candidates, a task scheduling algorithm candidate
having the highest average value is selected as a task sched-
uling algorithm having optimal performance. That is, in FIG.
10, the ranks of respective candidates are shown based on
makespan and prioinv values. As a result, it can be seen from
the resulting table that a NTWP/MIN-MNT algorithm com-
bination exhibits the best performance from the standpoint of
makespan and priority inversion. A NTWP/MIN-MNT algo-
rithm combination exhibits 4.08% improvement from the
standpoint of makespan and 30.37% improvement from the
standpoint of prioinv, compared to RR/MIN-RR exhibiting
the worst performance.

The operation at step S12 of FIG. 3 may be performed by a
combination unit (or combination device), the operation at
step S14 may be performed by a performance evaluation unit
(or a performance evaluation device), and the operation at
step S16 may be performed by a selection unit (or selection
device). Although not shown in detail in a separate drawing,
anyone will easily understand that, in order to practice the
present invention, an apparatus including a combination unit
capable of performing the operation at step S12, a perfor-
mance evaluation unit capable of performing the operation at
step S14, and a selection unit capable of performing the
operation at step S16 must be provided, from the above
description. Meanwhile, the operation of combining sequen-
tial task scheduling algorithm candidates with HPC task
scheduling algorithm candidates at step S12 may also be
performed by the user as occasion demands.

In accordance with the present invention having the above
configuration, a scheduling algorithm capable of performing
high-performance, real-time, and efficient task scheduling
can be selected or created in a multicore RTOS, with the result
that a multicore system can be desirably utilized and can
contribute to the further improvement of the performance of
embedded applications.

As described above, optimal embodiments of the present
invention have been disclosed in the drawings and the speci-
fication. Although specific terms have been used in the
present specification, these are merely intended to describe
the present invention and are not intended to limit the mean-
ings thereof or the scope of the present invention described in
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the accompanying claims. Therefore, those skilled in the art
will appreciate that various modifications and other equiva-
lent embodiments are possible from the embodiments. There-
fore, the technical scope of the present invention should be
defined by the technical spirit of the claims.
What is claimed is:
1. A task scheduling method for a priority-based real-time
operating system in a multicore environment, comprising:
combining, using a processor, one or more scheduling
algorithm candidates for sequential tasks with one or
more scheduling algorithm candidates for parallel tasks;

simulating, using the processor, respective task scheduling
algorithm candidates generated at the combining, and
evaluating performances of the simulated task schedul-
ing algorithm candidates based on performance evalua-
tion criteria; and

selecting, using the processor, a task scheduling algorithm

exhibiting best performance from among results
obtained from the evaluating of performances.

2. The task scheduling method of claim 1, wherein the
performance evaluation criteria include an execution time
required until execution of a last subtask of an application is
completed, and a number of cases where a task having lower
priority is executed even if a task having higher priority is
waiting in another core.

3. The task scheduling method of claim 2, wherein the
selecting the task scheduling algorithm is configured to select
a task scheduling algorithm candidate having a highest value
of average values as the task scheduling algorithm exhibiting
best performance, wherein the average values are obtained by
averaging a sum of percentages of execution times required
until the execution of the last subtask of the application is
completed and percentages of the number of cases where a
task having lower priority is executed even if a task having
higher priority is waiting in another core, based on results of
the simulation of respective task scheduling algorithm candi-
dates.

4. The task scheduling method of claim 1, wherein:

the simulation at evaluating the performances is configured

to perform simulation by applying each of the task
scheduling algorithm candidates, generated at combin-
ing, to a multicore real-time operating system applica-
tion program,

requirements of the multicore real-time operating system

application program include a requirement that sequen-
tial tasks and parallel tasks need to be present in an
application, a requirement that the sequential tasks need
to have tasks repeatedly executed with periodicity, a
requirement that the sequential tasks and the parallel
tasks need to have dependency, and a requirement that
all tasks need to have priorities and sizes.

5. The task scheduling method of claim 4, wherein the
multicore real-time operating system application program is
an application program adopting a decentralized scheme hav-
ing a hierarchical structure.

6. The task scheduling method of claim 1, wherein the one
or more scheduling algorithm candidates for the sequential
tasks include Round Robin (RR), Minimum Number of Tasks
(MNT), Load Balance (LB), and Number of Tasks, Waiting
Time and Priority (NTWP) algorithms.

7. The task scheduling method of claim 1, wherein the one
ormore scheduling algorithm candidates for the parallel tasks
include Minimum (MIN)-RR, MIN-MNT, MIN-LB, MIN-
NTWP, Maximum (MAX)-RR, MAX-MNT, MAX-LB, and
MAX-NTWP algorithms.

8. The task scheduling method of claim 1, wherein the task
scheduling algorithm candidates generated at combining
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include RR/MIN-RR, RR/MIN-MNT, RR/MIN-LB,
RR/MIN-NTWP, RR/MAX-RR, RR/MAX-MNT,
RR/MAX-LB, RR/MAX-NTWP, MNT/MIN-RR, MNT/
MIN-MNT, MNT/MIN-LB, MNT/MIN-NTWP, MNT/
MAX-RR, MNT/MAX-MNT, MNT/MAX-LB, MNT/ s
MAX-NTWP, LB/MIN-RR, LB/MIN-MNT, LB/MIN-LB,
LB/MIN-NTWP, LB/MAX-RR, LB/MAX-MNT, LB/MAX-
LB, LB/MAX-NTWP, NTWP/MIN-RR, NTWP/MIN-MNT,
NTWP/MIN-LB, NTWP/MIN-NTWP, NTWP/MAX-RR,
NTWP/MAX-MNT, NTWP/MAX-LB, and NTWP/MAX- 10
NTWP algorithms.



